Copied to
clipboard

?

G = C22×C8⋊D7order 448 = 26·7

Direct product of C22 and C8⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C8⋊D7, C5612C23, C28.66C24, (C2×C8)⋊36D14, C7⋊C811C23, (C22×C8)⋊12D7, C810(C22×D7), (C22×C56)⋊18C2, (C2×C56)⋊48C22, C141(C2×M4(2)), (C2×C14)⋊6M4(2), (C23×D7).8C4, C23.66(C4×D7), C4.65(C23×D7), C71(C22×M4(2)), C14.29(C23×C4), (C4×D7).33C23, (C2×C28).879C23, C28.145(C22×C4), D14.20(C22×C4), (C22×C4).470D14, Dic7.21(C22×C4), (C22×Dic7).17C4, (C22×C28).567C22, (C2×C4×D7).22C4, C4.120(C2×C4×D7), (C22×C7⋊C8)⋊22C2, (C2×C7⋊C8)⋊46C22, C2.30(D7×C22×C4), C22.75(C2×C4×D7), (C4×D7).35(C2×C4), (C2×C4).187(C4×D7), (D7×C22×C4).23C2, (C2×C28).257(C2×C4), (C2×C4×D7).301C22, (C22×D7).67(C2×C4), (C2×C4).823(C22×D7), (C22×C14).102(C2×C4), (C2×C14).155(C22×C4), (C2×Dic7).104(C2×C4), SmallGroup(448,1190)

Series: Derived Chief Lower central Upper central

C1C14 — C22×C8⋊D7
C1C7C14C28C4×D7C2×C4×D7D7×C22×C4 — C22×C8⋊D7
C7C14 — C22×C8⋊D7

Subgroups: 1124 in 298 conjugacy classes, 167 normal (17 characteristic)
C1, C2, C2 [×6], C2 [×4], C4, C4 [×3], C4 [×4], C22 [×7], C22 [×16], C7, C8 [×4], C8 [×4], C2×C4 [×6], C2×C4 [×22], C23, C23 [×10], D7 [×4], C14, C14 [×6], C2×C8 [×6], C2×C8 [×6], M4(2) [×16], C22×C4, C22×C4 [×13], C24, Dic7 [×4], C28, C28 [×3], D14 [×4], D14 [×12], C2×C14 [×7], C22×C8, C22×C8, C2×M4(2) [×12], C23×C4, C7⋊C8 [×4], C56 [×4], C4×D7 [×16], C2×Dic7 [×6], C2×C28 [×6], C22×D7 [×6], C22×D7 [×4], C22×C14, C22×M4(2), C8⋊D7 [×16], C2×C7⋊C8 [×6], C2×C56 [×6], C2×C4×D7 [×12], C22×Dic7, C22×C28, C23×D7, C2×C8⋊D7 [×12], C22×C7⋊C8, C22×C56, D7×C22×C4, C22×C8⋊D7

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D7, M4(2) [×4], C22×C4 [×14], C24, D14 [×7], C2×M4(2) [×6], C23×C4, C4×D7 [×4], C22×D7 [×7], C22×M4(2), C8⋊D7 [×4], C2×C4×D7 [×6], C23×D7, C2×C8⋊D7 [×6], D7×C22×C4, C22×C8⋊D7

Generators and relations
 G = < a,b,c,d,e | a2=b2=c8=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c5, ede=d-1 >

Smallest permutation representation
On 224 points
Generators in S224
(1 200)(2 193)(3 194)(4 195)(5 196)(6 197)(7 198)(8 199)(9 169)(10 170)(11 171)(12 172)(13 173)(14 174)(15 175)(16 176)(17 149)(18 150)(19 151)(20 152)(21 145)(22 146)(23 147)(24 148)(25 217)(26 218)(27 219)(28 220)(29 221)(30 222)(31 223)(32 224)(33 209)(34 210)(35 211)(36 212)(37 213)(38 214)(39 215)(40 216)(41 133)(42 134)(43 135)(44 136)(45 129)(46 130)(47 131)(48 132)(49 120)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 205)(58 206)(59 207)(60 208)(61 201)(62 202)(63 203)(64 204)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 127)(72 128)(73 137)(74 138)(75 139)(76 140)(77 141)(78 142)(79 143)(80 144)(81 164)(82 165)(83 166)(84 167)(85 168)(86 161)(87 162)(88 163)(89 179)(90 180)(91 181)(92 182)(93 183)(94 184)(95 177)(96 178)(97 159)(98 160)(99 153)(100 154)(101 155)(102 156)(103 157)(104 158)(105 187)(106 188)(107 189)(108 190)(109 191)(110 192)(111 185)(112 186)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 201)(10 202)(11 203)(12 204)(13 205)(14 206)(15 207)(16 208)(17 209)(18 210)(19 211)(20 212)(21 213)(22 214)(23 215)(24 216)(33 149)(34 150)(35 151)(36 152)(37 145)(38 146)(39 147)(40 148)(41 157)(42 158)(43 159)(44 160)(45 153)(46 154)(47 155)(48 156)(49 165)(50 166)(51 167)(52 168)(53 161)(54 162)(55 163)(56 164)(57 173)(58 174)(59 175)(60 176)(61 169)(62 170)(63 171)(64 172)(65 181)(66 182)(67 183)(68 184)(69 177)(70 178)(71 179)(72 180)(73 189)(74 190)(75 191)(76 192)(77 185)(78 186)(79 187)(80 188)(81 119)(82 120)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 127)(90 128)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)(97 135)(98 136)(99 129)(100 130)(101 131)(102 132)(103 133)(104 134)(105 143)(106 144)(107 137)(108 138)(109 139)(110 140)(111 141)(112 142)(193 221)(194 222)(195 223)(196 224)(197 217)(198 218)(199 219)(200 220)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 54 57 158 183 145 191)(2 55 58 159 184 146 192)(3 56 59 160 177 147 185)(4 49 60 153 178 148 186)(5 50 61 154 179 149 187)(6 51 62 155 180 150 188)(7 52 63 156 181 151 189)(8 53 64 157 182 152 190)(9 130 127 209 143 224 83)(10 131 128 210 144 217 84)(11 132 121 211 137 218 85)(12 133 122 212 138 219 86)(13 134 123 213 139 220 87)(14 135 124 214 140 221 88)(15 136 125 215 141 222 81)(16 129 126 216 142 223 82)(17 105 196 113 201 100 89)(18 106 197 114 202 101 90)(19 107 198 115 203 102 91)(20 108 199 116 204 103 92)(21 109 200 117 205 104 93)(22 110 193 118 206 97 94)(23 111 194 119 207 98 95)(24 112 195 120 208 99 96)(25 167 170 47 72 34 80)(26 168 171 48 65 35 73)(27 161 172 41 66 36 74)(28 162 173 42 67 37 75)(29 163 174 43 68 38 76)(30 164 175 44 69 39 77)(31 165 176 45 70 40 78)(32 166 169 46 71 33 79)
(1 139)(2 144)(3 141)(4 138)(5 143)(6 140)(7 137)(8 142)(9 179)(10 184)(11 181)(12 178)(13 183)(14 180)(15 177)(16 182)(17 166)(18 163)(19 168)(20 165)(21 162)(22 167)(23 164)(24 161)(25 110)(26 107)(27 112)(28 109)(29 106)(30 111)(31 108)(32 105)(33 113)(34 118)(35 115)(36 120)(37 117)(38 114)(39 119)(40 116)(41 99)(42 104)(43 101)(44 98)(45 103)(46 100)(47 97)(48 102)(49 212)(50 209)(51 214)(52 211)(53 216)(54 213)(55 210)(56 215)(57 123)(58 128)(59 125)(60 122)(61 127)(62 124)(63 121)(64 126)(65 203)(66 208)(67 205)(68 202)(69 207)(70 204)(71 201)(72 206)(73 198)(74 195)(75 200)(76 197)(77 194)(78 199)(79 196)(80 193)(81 147)(82 152)(83 149)(84 146)(85 151)(86 148)(87 145)(88 150)(89 169)(90 174)(91 171)(92 176)(93 173)(94 170)(95 175)(96 172)(129 157)(130 154)(131 159)(132 156)(133 153)(134 158)(135 155)(136 160)(185 222)(186 219)(187 224)(188 221)(189 218)(190 223)(191 220)(192 217)

G:=sub<Sym(224)| (1,200)(2,193)(3,194)(4,195)(5,196)(6,197)(7,198)(8,199)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,149)(18,150)(19,151)(20,152)(21,145)(22,146)(23,147)(24,148)(25,217)(26,218)(27,219)(28,220)(29,221)(30,222)(31,223)(32,224)(33,209)(34,210)(35,211)(36,212)(37,213)(38,214)(39,215)(40,216)(41,133)(42,134)(43,135)(44,136)(45,129)(46,130)(47,131)(48,132)(49,120)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,205)(58,206)(59,207)(60,208)(61,201)(62,202)(63,203)(64,204)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(81,164)(82,165)(83,166)(84,167)(85,168)(86,161)(87,162)(88,163)(89,179)(90,180)(91,181)(92,182)(93,183)(94,184)(95,177)(96,178)(97,159)(98,160)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,185)(112,186), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,201)(10,202)(11,203)(12,204)(13,205)(14,206)(15,207)(16,208)(17,209)(18,210)(19,211)(20,212)(21,213)(22,214)(23,215)(24,216)(33,149)(34,150)(35,151)(36,152)(37,145)(38,146)(39,147)(40,148)(41,157)(42,158)(43,159)(44,160)(45,153)(46,154)(47,155)(48,156)(49,165)(50,166)(51,167)(52,168)(53,161)(54,162)(55,163)(56,164)(57,173)(58,174)(59,175)(60,176)(61,169)(62,170)(63,171)(64,172)(65,181)(66,182)(67,183)(68,184)(69,177)(70,178)(71,179)(72,180)(73,189)(74,190)(75,191)(76,192)(77,185)(78,186)(79,187)(80,188)(81,119)(82,120)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,127)(90,128)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,135)(98,136)(99,129)(100,130)(101,131)(102,132)(103,133)(104,134)(105,143)(106,144)(107,137)(108,138)(109,139)(110,140)(111,141)(112,142)(193,221)(194,222)(195,223)(196,224)(197,217)(198,218)(199,219)(200,220), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,54,57,158,183,145,191)(2,55,58,159,184,146,192)(3,56,59,160,177,147,185)(4,49,60,153,178,148,186)(5,50,61,154,179,149,187)(6,51,62,155,180,150,188)(7,52,63,156,181,151,189)(8,53,64,157,182,152,190)(9,130,127,209,143,224,83)(10,131,128,210,144,217,84)(11,132,121,211,137,218,85)(12,133,122,212,138,219,86)(13,134,123,213,139,220,87)(14,135,124,214,140,221,88)(15,136,125,215,141,222,81)(16,129,126,216,142,223,82)(17,105,196,113,201,100,89)(18,106,197,114,202,101,90)(19,107,198,115,203,102,91)(20,108,199,116,204,103,92)(21,109,200,117,205,104,93)(22,110,193,118,206,97,94)(23,111,194,119,207,98,95)(24,112,195,120,208,99,96)(25,167,170,47,72,34,80)(26,168,171,48,65,35,73)(27,161,172,41,66,36,74)(28,162,173,42,67,37,75)(29,163,174,43,68,38,76)(30,164,175,44,69,39,77)(31,165,176,45,70,40,78)(32,166,169,46,71,33,79), (1,139)(2,144)(3,141)(4,138)(5,143)(6,140)(7,137)(8,142)(9,179)(10,184)(11,181)(12,178)(13,183)(14,180)(15,177)(16,182)(17,166)(18,163)(19,168)(20,165)(21,162)(22,167)(23,164)(24,161)(25,110)(26,107)(27,112)(28,109)(29,106)(30,111)(31,108)(32,105)(33,113)(34,118)(35,115)(36,120)(37,117)(38,114)(39,119)(40,116)(41,99)(42,104)(43,101)(44,98)(45,103)(46,100)(47,97)(48,102)(49,212)(50,209)(51,214)(52,211)(53,216)(54,213)(55,210)(56,215)(57,123)(58,128)(59,125)(60,122)(61,127)(62,124)(63,121)(64,126)(65,203)(66,208)(67,205)(68,202)(69,207)(70,204)(71,201)(72,206)(73,198)(74,195)(75,200)(76,197)(77,194)(78,199)(79,196)(80,193)(81,147)(82,152)(83,149)(84,146)(85,151)(86,148)(87,145)(88,150)(89,169)(90,174)(91,171)(92,176)(93,173)(94,170)(95,175)(96,172)(129,157)(130,154)(131,159)(132,156)(133,153)(134,158)(135,155)(136,160)(185,222)(186,219)(187,224)(188,221)(189,218)(190,223)(191,220)(192,217)>;

G:=Group( (1,200)(2,193)(3,194)(4,195)(5,196)(6,197)(7,198)(8,199)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,149)(18,150)(19,151)(20,152)(21,145)(22,146)(23,147)(24,148)(25,217)(26,218)(27,219)(28,220)(29,221)(30,222)(31,223)(32,224)(33,209)(34,210)(35,211)(36,212)(37,213)(38,214)(39,215)(40,216)(41,133)(42,134)(43,135)(44,136)(45,129)(46,130)(47,131)(48,132)(49,120)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,205)(58,206)(59,207)(60,208)(61,201)(62,202)(63,203)(64,204)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(81,164)(82,165)(83,166)(84,167)(85,168)(86,161)(87,162)(88,163)(89,179)(90,180)(91,181)(92,182)(93,183)(94,184)(95,177)(96,178)(97,159)(98,160)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,185)(112,186), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,201)(10,202)(11,203)(12,204)(13,205)(14,206)(15,207)(16,208)(17,209)(18,210)(19,211)(20,212)(21,213)(22,214)(23,215)(24,216)(33,149)(34,150)(35,151)(36,152)(37,145)(38,146)(39,147)(40,148)(41,157)(42,158)(43,159)(44,160)(45,153)(46,154)(47,155)(48,156)(49,165)(50,166)(51,167)(52,168)(53,161)(54,162)(55,163)(56,164)(57,173)(58,174)(59,175)(60,176)(61,169)(62,170)(63,171)(64,172)(65,181)(66,182)(67,183)(68,184)(69,177)(70,178)(71,179)(72,180)(73,189)(74,190)(75,191)(76,192)(77,185)(78,186)(79,187)(80,188)(81,119)(82,120)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,127)(90,128)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,135)(98,136)(99,129)(100,130)(101,131)(102,132)(103,133)(104,134)(105,143)(106,144)(107,137)(108,138)(109,139)(110,140)(111,141)(112,142)(193,221)(194,222)(195,223)(196,224)(197,217)(198,218)(199,219)(200,220), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,54,57,158,183,145,191)(2,55,58,159,184,146,192)(3,56,59,160,177,147,185)(4,49,60,153,178,148,186)(5,50,61,154,179,149,187)(6,51,62,155,180,150,188)(7,52,63,156,181,151,189)(8,53,64,157,182,152,190)(9,130,127,209,143,224,83)(10,131,128,210,144,217,84)(11,132,121,211,137,218,85)(12,133,122,212,138,219,86)(13,134,123,213,139,220,87)(14,135,124,214,140,221,88)(15,136,125,215,141,222,81)(16,129,126,216,142,223,82)(17,105,196,113,201,100,89)(18,106,197,114,202,101,90)(19,107,198,115,203,102,91)(20,108,199,116,204,103,92)(21,109,200,117,205,104,93)(22,110,193,118,206,97,94)(23,111,194,119,207,98,95)(24,112,195,120,208,99,96)(25,167,170,47,72,34,80)(26,168,171,48,65,35,73)(27,161,172,41,66,36,74)(28,162,173,42,67,37,75)(29,163,174,43,68,38,76)(30,164,175,44,69,39,77)(31,165,176,45,70,40,78)(32,166,169,46,71,33,79), (1,139)(2,144)(3,141)(4,138)(5,143)(6,140)(7,137)(8,142)(9,179)(10,184)(11,181)(12,178)(13,183)(14,180)(15,177)(16,182)(17,166)(18,163)(19,168)(20,165)(21,162)(22,167)(23,164)(24,161)(25,110)(26,107)(27,112)(28,109)(29,106)(30,111)(31,108)(32,105)(33,113)(34,118)(35,115)(36,120)(37,117)(38,114)(39,119)(40,116)(41,99)(42,104)(43,101)(44,98)(45,103)(46,100)(47,97)(48,102)(49,212)(50,209)(51,214)(52,211)(53,216)(54,213)(55,210)(56,215)(57,123)(58,128)(59,125)(60,122)(61,127)(62,124)(63,121)(64,126)(65,203)(66,208)(67,205)(68,202)(69,207)(70,204)(71,201)(72,206)(73,198)(74,195)(75,200)(76,197)(77,194)(78,199)(79,196)(80,193)(81,147)(82,152)(83,149)(84,146)(85,151)(86,148)(87,145)(88,150)(89,169)(90,174)(91,171)(92,176)(93,173)(94,170)(95,175)(96,172)(129,157)(130,154)(131,159)(132,156)(133,153)(134,158)(135,155)(136,160)(185,222)(186,219)(187,224)(188,221)(189,218)(190,223)(191,220)(192,217) );

G=PermutationGroup([(1,200),(2,193),(3,194),(4,195),(5,196),(6,197),(7,198),(8,199),(9,169),(10,170),(11,171),(12,172),(13,173),(14,174),(15,175),(16,176),(17,149),(18,150),(19,151),(20,152),(21,145),(22,146),(23,147),(24,148),(25,217),(26,218),(27,219),(28,220),(29,221),(30,222),(31,223),(32,224),(33,209),(34,210),(35,211),(36,212),(37,213),(38,214),(39,215),(40,216),(41,133),(42,134),(43,135),(44,136),(45,129),(46,130),(47,131),(48,132),(49,120),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,205),(58,206),(59,207),(60,208),(61,201),(62,202),(63,203),(64,204),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,127),(72,128),(73,137),(74,138),(75,139),(76,140),(77,141),(78,142),(79,143),(80,144),(81,164),(82,165),(83,166),(84,167),(85,168),(86,161),(87,162),(88,163),(89,179),(90,180),(91,181),(92,182),(93,183),(94,184),(95,177),(96,178),(97,159),(98,160),(99,153),(100,154),(101,155),(102,156),(103,157),(104,158),(105,187),(106,188),(107,189),(108,190),(109,191),(110,192),(111,185),(112,186)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,201),(10,202),(11,203),(12,204),(13,205),(14,206),(15,207),(16,208),(17,209),(18,210),(19,211),(20,212),(21,213),(22,214),(23,215),(24,216),(33,149),(34,150),(35,151),(36,152),(37,145),(38,146),(39,147),(40,148),(41,157),(42,158),(43,159),(44,160),(45,153),(46,154),(47,155),(48,156),(49,165),(50,166),(51,167),(52,168),(53,161),(54,162),(55,163),(56,164),(57,173),(58,174),(59,175),(60,176),(61,169),(62,170),(63,171),(64,172),(65,181),(66,182),(67,183),(68,184),(69,177),(70,178),(71,179),(72,180),(73,189),(74,190),(75,191),(76,192),(77,185),(78,186),(79,187),(80,188),(81,119),(82,120),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,127),(90,128),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126),(97,135),(98,136),(99,129),(100,130),(101,131),(102,132),(103,133),(104,134),(105,143),(106,144),(107,137),(108,138),(109,139),(110,140),(111,141),(112,142),(193,221),(194,222),(195,223),(196,224),(197,217),(198,218),(199,219),(200,220)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,54,57,158,183,145,191),(2,55,58,159,184,146,192),(3,56,59,160,177,147,185),(4,49,60,153,178,148,186),(5,50,61,154,179,149,187),(6,51,62,155,180,150,188),(7,52,63,156,181,151,189),(8,53,64,157,182,152,190),(9,130,127,209,143,224,83),(10,131,128,210,144,217,84),(11,132,121,211,137,218,85),(12,133,122,212,138,219,86),(13,134,123,213,139,220,87),(14,135,124,214,140,221,88),(15,136,125,215,141,222,81),(16,129,126,216,142,223,82),(17,105,196,113,201,100,89),(18,106,197,114,202,101,90),(19,107,198,115,203,102,91),(20,108,199,116,204,103,92),(21,109,200,117,205,104,93),(22,110,193,118,206,97,94),(23,111,194,119,207,98,95),(24,112,195,120,208,99,96),(25,167,170,47,72,34,80),(26,168,171,48,65,35,73),(27,161,172,41,66,36,74),(28,162,173,42,67,37,75),(29,163,174,43,68,38,76),(30,164,175,44,69,39,77),(31,165,176,45,70,40,78),(32,166,169,46,71,33,79)], [(1,139),(2,144),(3,141),(4,138),(5,143),(6,140),(7,137),(8,142),(9,179),(10,184),(11,181),(12,178),(13,183),(14,180),(15,177),(16,182),(17,166),(18,163),(19,168),(20,165),(21,162),(22,167),(23,164),(24,161),(25,110),(26,107),(27,112),(28,109),(29,106),(30,111),(31,108),(32,105),(33,113),(34,118),(35,115),(36,120),(37,117),(38,114),(39,119),(40,116),(41,99),(42,104),(43,101),(44,98),(45,103),(46,100),(47,97),(48,102),(49,212),(50,209),(51,214),(52,211),(53,216),(54,213),(55,210),(56,215),(57,123),(58,128),(59,125),(60,122),(61,127),(62,124),(63,121),(64,126),(65,203),(66,208),(67,205),(68,202),(69,207),(70,204),(71,201),(72,206),(73,198),(74,195),(75,200),(76,197),(77,194),(78,199),(79,196),(80,193),(81,147),(82,152),(83,149),(84,146),(85,151),(86,148),(87,145),(88,150),(89,169),(90,174),(91,171),(92,176),(93,173),(94,170),(95,175),(96,172),(129,157),(130,154),(131,159),(132,156),(133,153),(134,158),(135,155),(136,160),(185,222),(186,219),(187,224),(188,221),(189,218),(190,223),(191,220),(192,217)])

Matrix representation G ⊆ GL4(𝔽113) generated by

112000
011200
001120
000112
,
112000
0100
0010
0001
,
1000
09800
008631
002827
,
1000
0100
00104112
007233
,
112000
0100
008010
007233
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[112,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,98,0,0,0,0,86,28,0,0,31,27],[1,0,0,0,0,1,0,0,0,0,104,72,0,0,112,33],[112,0,0,0,0,1,0,0,0,0,80,72,0,0,10,33] >;

136 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L7A7B7C8A···8H8I···8P14A···14U28A···28X56A···56AV
order12···222224···444447778···88···814···1428···2856···56
size11···1141414141···1141414142222···214···142···22···22···2

136 irreducible representations

dim111111112222222
type++++++++
imageC1C2C2C2C2C4C4C4D7M4(2)D14D14C4×D7C4×D7C8⋊D7
kernelC22×C8⋊D7C2×C8⋊D7C22×C7⋊C8C22×C56D7×C22×C4C2×C4×D7C22×Dic7C23×D7C22×C8C2×C14C2×C8C22×C4C2×C4C23C22
# reps11211112223818318648

In GAP, Magma, Sage, TeX

C_2^2\times C_8\rtimes D_7
% in TeX

G:=Group("C2^2xC8:D7");
// GroupNames label

G:=SmallGroup(448,1190);
// by ID

G=gap.SmallGroup(448,1190);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,1123,80,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^8=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^5,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽